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In recent years, considerable effort has been devoted to the
synthesis and study of expanded porphyrins, large porphyrin-like
polypyrrolic macrocycles.1-3 However, the number of synthetic
methods that can be used to construct these kinds of macrocyclic
structures remains quite limited. In fact, the vast majority of
carbon-linked expanded porphyrins reported to date have been
prepared using one of two generalized ring-forming procedures
that involve, respectively, either (1) acid-catalyzed Rothe-
mund-1,2 or MacDonald-like1,3 condensations or (2) reductive
McMurry-type couplings.1 Although these methods are remark-
ably versatile, they are subject to limitations, as we discovered
recently while trying unsuccessfully to convert quaterpyrrole14

into a range of macrocyclic products.5 As we see it, therefore,
there is thus a need for new expanded porphyrin-generating
strategies. One attractive strategy involves the use of a directed
oxidative pyrrolef bipyrrole coupling procedure. While oxidative
couplings are implicated in the formation of several bipyrrole-
containing macrocycles (e.g., corroles, sapphyrins, and rubyrins)
under Rothemund-like conditions,6 and have been used to prepare
bipyrrole itself,7 their use as part of an explicit, expanded
porphyrin-generating strategy remains relatively unexplored.8,9 We
now report that by using such a strategy it is possible to prepare

[28]heptaphyrin(1.0.0.1.0.0.0) (5) and [32]octaphyrin(1.0.0.0.1.0.0.0)
(6); to the best of our knowledge, these systems constitute the
first expanded porphyrins containing a quaterpyrrole fragment
and the first higher order polypyrrolic macrocycles to be
synthesized by using a directed oxidative pyrrolef bipyrrole
ring-closing procedure.

The synthesis of [28]heptaphyrin(1.0.0.1.0.0.0) (5), the first
apparent heptaphyrin to be reported in the literature,1 is sum-
marized in Scheme 1. Briefly, the diformyl hexamethylterpyrrole
precursor210 was condensed with 2.5 equiv of tetramethylbipyr-
role 311 under conditions of acid catalysis to furnish the linear
oligopyrrole 4.12 This latter intermediate, although apparently
stable, was not isolated. Rather, it was treated immediately with
aqueous Na2Cr2O7 in TFA. Under these conditions, analogous to
those used by Falk to produce bipyrrole from pyrrole,7 oxidative
ring closure occurs spontaneously to afford5 in 43% yield (2
steps). Treatment with sulfuric acid produced the corresponding
sulfate salt, H252+‚SO4

2-.
In some respects the synthesis of [32]octaphyrin(1.0.0.0.1.0.0.0)

(6) proved even more straightforward. All that was required was
exposure of the linear tetrapyrrolic precursor713,14 to Cr(VI) as
above; this produced6 in one step in 16% yield (Scheme 2).15

Macrocycles5 and 6 are novel molecules and display some
unique features. While not formally aromatic, they do contain
extendedπ-electron conjugation pathways. Further, containing
as they do quaterpyrrole subunits, they possess exceptionally high
pyrrole to meso-like carbon ratios, namely 3.5 and 4.0 in the case
of 5 and6, respectively. This makes them, along with amethyrin
8 (pyrrole to meso-like carbon ratio of 3),16 the most “contracted”
expanded porphyrins produced to date. Despite this, they appear
quite stable under normal laboratory conditions in both their free-
base and protonated forms.

The unique features of5 and 6 are reflected in part in their
spectroscopic properties. For instance, in the case of H252+‚SO4

2-,
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as in the case of H282+‚2Cl-, three sharp bands are seen in the
electronic spectrum.17 By contrast, in the case of H262+‚2Cl-,
perhaps as the result of deviations from planarity, these bands
are more muted and appear in the form of shoulders. Still, even
in this case, as for the free-base forms5 and 6, a spectral
resemblance to amethyrin was seen, with the bands themselves
being red-shifted.17

Proton NMR spectroscopic studies of both5 and6 were also
carried out. In the case of theC2 symmetric system H252+, one
finds, as expected, four NH signals in an integral ratio of 2:2:2:1
in the 15.9-18.2 ppm spectral region. For H262+‚2Cl- two
pyrrolic NH signals are seen in a 1:1 ratio at 11.2 and 11.9 ppm,
respectively, as would be expected based on considerations of
symmetry. While the extent of downfield displacement is less in
the case of H262+‚2Cl- than H252+‚SO4

2-, the observation of inner
NH signals at low field is, in itself, considered diagnostic of a
nonaromatic expanded porphyrin; such signals are seen in a range
of related systems, including H282+.1,16

Definite proof of structure for compounds5 and6 came from
single-crystal X-ray diffraction analyses of their diprotonated
adducts, H252+‚SO4

2- and H262+‚2Cl-.18 In the case of H252+‚SO4
2-

(Figure 1), the macrocycle was found to be fairly planar and to
contain a large cavity into which the sulfate counterion is bound.
Anion binding,19 at least in the solid state, is also apparent in the
X-ray diffraction structure of H262+‚2Cl- (Figure 2). In this
instance, however, the system is seen to deviate substantially from
planarity. While this result is consistent with what was inferred
from spectral studies (vide supra), the extent of this deviation is
nonetheless far less than that which is observed in several other
“less contracted” octapyrrolic macrocycles, including [32]octa-
phyrin(1.0.1.0.1.0.1.0),14 [36]octaphyrin(2.1.0.1.2.1.0.1)20 and [34]-

octaphyrin(1.1.1.0.1.1.1.0)20 wherein “Figure 8” structures are
observed. Presumably, this reflects the reduced number of pivot-
like meso carbon atoms present in H262+‚2Cl-.

In summary, the synthesis of two novel expanded porphyrin
systems, prepared by a new directed oxidative coupling procedure,
is described. This latter methodology is not only reasonably high-
yielding and efficient in terms of the number of steps required to
generate a macrocyclic product, it also appears to be quite
versatile.21 It could thus emerge as a quite useful synthetic tool.
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respectively. See the Supporting Information.
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Scheme 1

Scheme 2

Figure 1. View of the H252+‚SO4
2- H-bonding complex showing a partial

atom labeling scheme. The N‚‚‚O contacts range from 2.668(5) to 2.961-
(5) Å. The thermal ellipsoids are scaled to the 50% probability level.

Figure 2. View of H262+‚2Cl- with a partial atom labeling scheme.
Displacement ellipsoids are scaled to the 50% probability level. The
macrocycle is H-bound by two Cl- ions and two molecules of methanol.
The Cl - N contacts range from 3.123(4) to 3.255(4) Å.
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